Abstract
Thin film SMA (Shape memory alloy) is a useful material for MEMS (Microelectromechanical Systems) actuator. This is because the thin film has an improved frequency response compared to bulk SMA, high work density, and produces large strain. A novel two-way thin film NiTi (Nickel Titanium) shape memory alloy actuator is presented in this paper. Thin film shape memory alloy is sputter-deposited onto a silicon wafer in an ultra high vacuum system. Transformation temperatures of the NiTi film are determined by measuring the residual stress as a function of temperature. Test results show that the Martensite-Temperature-Finish (Mf) is approximately 60° C, and the Austenite-Temperature-Finish (Af) is 110° C. A free standing NiTi membrane (12 mm × 12 mm and 2.5 μm thick) is fabricated using MEMS technology. We found that a mixture of HF (Hydro Fluoric Acid), HNO3 (Nitric Acid) and DI (Deionized) water with thick photo resist mask works best for the fabrication process. The membrane is hot-shaped into a dome shape. Results indicate that when the temperature of the NiTi film exceeds Af, the NiTi membrane transforms into the trained hot-shape. When the temperature cools down to room temperature, the membrane returns to the initial flat shape. The performance of the SMA micro actuator is characterized with a laser measurement system for deflection vs. input power and frequency response. The maximum deflection of SMA microactuator is 230 μm. The corresponding frequency responses at the maximum deflection are 30 Hz with Copper (Cu) block placed underneath the microactuator and less than 1 Hz when Plexi-glass is placed.