Results from recent and ongoing investigations of frictional sliding under dynamic loading conditions are discussed. The configuration analyzed consists of two identical elastic plates with an interface characterized by a rate- and state-dependent frictional law. The calculations are carried out within a framework where two constitutive relations are used: a volumetric constitutive relation between stress and strain and a surface constitutive relation that characterizes the frictional behavior of the interface. The simulations discussed predict a variety of sliding modes including a crack-like mode and several pulse-like modes as well as circumstances where the sliding tip speed can exceed the longitudinal wave speed.

This content is only available via PDF.
You do not currently have access to this content.