The wear between the plunger and plunger sleeve of rotary diesel fuel injection pump causes considerable decrease in injection pressure and the quantity of fuel to combustion chamber of an engine, which ultimately leads to failure of engine assembly. This research investigates the cause of failure particularly focusing on surface roughness effects to hydrodynamic lubrication and scuffing failure due to abrasive contaminant. The surface roughness of plunger and plunger sleeve were measured and incorporated in Reynolds equation to analyze roughness effects on hydrodynamic lubrication. The critical particle size of the dust normally present in the diesel fuel is evaluated to determine which test dust sample could cause systems to fail. Based on this information, scuffing failure of pumps due to an abrasive contaminant partially penetrated in the plunger sleeve is analyzed. The abrasive contaminant is modeled as a spherical shaped rigid particle. Excessive temperature rise between the particle-plunger interface is used as an indication of whether scuffing would take place. Experiments were conducted to determine parameters such as particle size of dust samples, surface roughness of plunger and plunger sleeve, specific heat of diesel fuel, diesel fuel density, quantity of fuel flow and radial clearance. These experimentally determined parameters are then used as input in our computer program to lend more confidence to our predicted results.

This content is only available via PDF.
You do not currently have access to this content.