Microball bearings can potentially provide robust and low friction support in micromachines such as micromotors and microgenerators. Their microtribological behavior needs to be investigated for design and control of such micromachines. In this paper a vision-based, non-intrusive measurement method is presented for characterization of friction in linear microball bearings. Infrared imaging is used to directly observe the dynamics of microballs and track the motion of bearing components. It is verified that microballs roll most of the time with occasional sliding or bumping resulting from fabrication nonuniformity. The friction-velocity curve demonstrates evident hysteresis. The dependence of frictional behavior on several factors is studied.

This content is only available via PDF.
You do not currently have access to this content.