Numerical integration has been widely used in commercial FEA software to solve transient problems. However, for the large-scale inhomogeneous thermoelastic contact problem (ITEC), this method is found to be extremely computation-intensive. This paper introduces a new approach to solve the ITEC transient problem with much lower computational complexity. The method is based on the transient modal analysis (TMA) method in conjunction with the fast speed expansion (FSE) method. The TMA method is used to obtain the inhomogeneous transient solution by expressing the solution in modal coordinates, corresponding to eigenfunctions of the homogeneous (unloaded) problem. If the sliding speed is constant, the eigenfunctions can be found by one run of the commercial software program ‘HotSpotter’. However, if the speed varies, the eigenfunctions change and numerous runs of HotSpotter are needed, making the method computationally inefficient. However, the FSE method employs an efficient algorithm to interpolate and expand the eigenfunctions and eigenvalues over a range of speeds. This reduces the number of eigenvalue solutions required and results in a significant reduction in computation time. The method is illustrated with application to an axisymmetric transmission clutch problem.

This content is only available via PDF.
You do not currently have access to this content.