Numerical investigations are carried out to simulate wear and the analysis of these simulations leads to proposing an original new wear law that takes into account interfacial particles in the contact. A 3D Discrete Element Model is presented that simulates the detachment of particles, their flow in the contact and their ejection. It shows that a layer of detached particles can be formed at the interface, separating the solids in contact. The simulations show how influential the contact geometry and the properties of the interfacial particles are in studying wear. The processes of material degradation and particle ejection are then studied separately. Their physical behaviour is analysed and simple analytical expressions are proposed. Consideration of the mass balance of the contact provides an analytical law for wear, involving the fate of the detached particles. Classical wear laws (such as Archard’s law), assuming that no particle stays in the contact, appear to be a limit case of this model.

This content is only available via PDF.
You do not currently have access to this content.