A three-dimensional numerical model based on a semi-analytical method in the framework of small strains and small displacements with respect of Hertz’s hypotheses is presented for solving an elastic-plastic dented contact with friction. The calculation of surface deformations and pressure distribution, which is the most time consuming step during the elastic-plastic algorithm, is obtained using a method based on a variational principle with a Fast Fourier Transform (FFT) and a Conjugate Gradient Method (CGM). The method is fast enough to allow investigating the effect of a small size surface defect, here a debris denting, on the subsurface elastic-plastic stress state, requiring a fine mesh with around 106 surface grid points. Further, the FFT approach is also involved in the calculation of internal stress state. The plasticity model is based on an incremental load and Von Mises yield criterion. The effects of the contact pressure distribution and residual strain on the geometry of the contacting surfaces yield from the Betti’s reciprocal theorem with initial strain. The code is used to compute a few smooth and dented contacts, with several types of contact interfaces conditions, including frictionless and Coulomb friction. The effects of surface dents and friction on the contact pressure and subsurface stress field are presented and discussed.
Skip Nav Destination
ASME/STLE 2004 International Joint Tribology Conference
October 24–27, 2004
Long Beach, California, USA
Conference Sponsors:
- Tribology Division
ISBN:
0-7918-4181-2
PROCEEDINGS PAPER
A Three-Dimensional Friction Model for Elastic-Plastic Contact With Tangential Loading: Application to Dented Surfaces Available to Purchase
Eduard Antaluca,
Eduard Antaluca
INSA Lyon, Villeurbanne, France
Search for other works by this author on:
Daniel Ne´lias,
Daniel Ne´lias
INSA Lyon, Villeurbanne, France
Search for other works by this author on:
Spiridon Cretu
Spiridon Cretu
Technical University “Gh. Asachi”, Iasi, Romania
Search for other works by this author on:
Eduard Antaluca
INSA Lyon, Villeurbanne, France
Daniel Ne´lias
INSA Lyon, Villeurbanne, France
Spiridon Cretu
Technical University “Gh. Asachi”, Iasi, Romania
Paper No:
TRIB2004-64331, pp. 1-8; 8 pages
Published Online:
December 22, 2008
Citation
Antaluca, E, Ne´lias, D, & Cretu, S. "A Three-Dimensional Friction Model for Elastic-Plastic Contact With Tangential Loading: Application to Dented Surfaces." Proceedings of the ASME/STLE 2004 International Joint Tribology Conference. ASME/STLE 2004 International Joint Tribology Conference, Parts A and B. Long Beach, California, USA. October 24–27, 2004. pp. 1-8. ASME. https://doi.org/10.1115/TRIB2004-64331
Download citation file:
16
Views
Related Proceedings Papers
Related Articles
A Review of Elastic–Plastic Contact Mechanics
Appl. Mech. Rev (November,2017)
Fretting Contact Analysis on Three-Dimensional Elastic Layered Half Space
J. Tribol (July,2011)
Related Chapters
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Matrix Equations of the Contact Problem
Contact in Structural Mechanics: A Weighted Residual Approach
Global Mode Visualization in Cavitating Flows
Proceedings of the 10th International Symposium on Cavitation (CAV2018)