As surfaces become smoother and loading forces decrease in applications such as MEMS and NEMS devices, the asperity contacts which comprise the real contact area will continue to decrease into the nano scale regime. Thus it becomes important to understand how the material and topographical properties of surfaces contribute to measured friction forces at this nano scale. We have incorporated the single asperity nano contact model of Hurtado and Kim into a multi-asperity model for contact and friction which includes the effect of asperity adhesion forces using the Maugis-Dugdale model. Our model spans the range from nano-scale to micro-scale to macro-scale contacts. We have identified three key dimensionless parameters representing combinations of surface roughness measures, Burgers vector length, surface energy, and elastic modulus. Results are given for the normal and friction forces vs. separation, and for the friction coefficient vs. normal force for various values of these key parameters.

This content is only available via PDF.
You do not currently have access to this content.