When solving the problems involving inhomogeneous materials, the influence of the inhomogeneity upon contact behavior should be properly considered. This research proposes a fast and novel method, based on the equivalent inclusion method where inhomogeneity is replaced by an inclusion with properly chosen eigenstrains, to simulate contact partial slip of the interface involving inhomogeneous materials. The total stress and displacement fields represent the superposition of homogeneous solutions and perturbed solutions due to the chosen eigenstrains. In the present numerical simulation, the half space is meshed into a number of cuboids of the same size, where each cuboid is has a uniform eigenstrain. The stress and displacement fields due to eigenstrains are formulated by employing the recent half-space inclusion solutions derived by the authors and solved using a three-dimensional fast Fourier transform algorithm. The partial slip contact between an elastic ball and an elastic half space containing a cuboidal inhomogeneity was investigated.

This content is only available via PDF.
You do not currently have access to this content.