This paper presents a hybrid mobility solution approach to the analysis of dynamically loaded misaligned journal bearings. Mobility data obtained for misaligned bearings (calculated from a finite element representation of the Reynolds equation) are compared with existing curve-fitted mobility maps representative of a perfectly aligned bearing. A relative error analysis of mobility magnitude and direction provides a set of misaligned journal bearing configurations (midplane eccentricity ratio and normalized misalignment angle) where existing curve-fitted mobility map components based on aligned bearings can be used to calculate the resulting journal motion. For bearing configurations where these mobility maps are not applicable, the numerical simulation process proceeds using a complete finite element solution of the Reynolds equation. A set of numerical examples representing misaligned main and connecting rod bearings in a four-stroke automotive engine illustrate the hybrid solution method. Substantial savings in computational time are obtained using the hybrid approach over the complete finite element solution method without loss of computational accuracy.

This content is only available via PDF.
You do not currently have access to this content.