Under boundary and mixed lubrication surface roughness and topography have significant influence on the tribological behaviour of contact surfaces, where even a small change in surface topography can lead to a considerable change in tribological behaviour. In recent years an effort for better controlling friction and wear has been focused also on the surface topography modification, especially on surface texturing. The aim of the present research work was to investigate the possibility of using roughness parameters kurtosis and skewness as design parameters for optimizing texturing pattern in boundary and mixed lubricated contacts. Results of the investigation performed on groove and dimple textured surfaces under low load low sliding speed conditions confirm correlation between kurtosis and skewness parameters and coefficient of friction. For textured surfaces increase in kurtosis and more negative skewness, obtained by reducing cavity size, increasing cavity depth and decreasing texturing density were found to yield lower friction. Furthermore, kurtosis and skewness were recognized as suitable parameters for textured surfaces optimization. Through virtual texturing effect of different texturing parameters on kurtosis and skewness parameters can be identified and then optimized to result in reduced friction under boundary and mixed lubrication.

This content is only available via PDF.
You do not currently have access to this content.