Slip and fall accidents represent a serious occupational and public health concern. Yet, the tribological mechanisms that cause shoe and floor surfaces to be slippery are still not well understood. Previous attempts to model shoe-floor-contaminant friction under mixed-lubrication have ignored the effects of boundary lubrication. The purpose of this study was to examine the affect of roughness and viscosity on shoe-floor-contaminant lubrication by examining its effect on boundary and hydrodynamic lubrication. COF-velocity curves generated by a pin-on-disk tribometer were analyzed to determine the effects of roughness and viscosity on boundary and mixed lubrication. COF was collected under varying shoe roughness (7.3μm, 8.2μm, and 9.34μm), contaminant concentrations (water, 0.89cP; 1.5% diluted detergent, 1.28cP; 25% diluted glycerol, 1.9cP; 50% diluted glycerol, 5.54cP; and 75% diluted glycerol, 41cP), and speed (0.05–1.0m·sec−1). A single shoe material (polyurethane) and a single floor material (vinyl tile) were tested. Reduction in COF with increasing sliding speeds, consistent with regions of boundary and mixed lubrication were observed for all viscosities except the highest (41cP) and the lowest viscosity (water, 0.89cP). An exponential regression model was fit to the data to determine the effect of roughness and viscosity on the rate of COF decay, τhydro, and COF when velocity is 0, COFBL, indicative of boundary lubrication. τhydro was inferred to be a measure of the hydrodynamic lubricating effect. Fluid contaminant significantly affected both COFBL and τhydro. Post-hoc analyses revealed that COFBL decreased with higher concentrations of glycerol. τhydro was significantly higher under 1.28cP (diluted detergent) viscosity lubrication when compared to 1.9cP and 5.54cP (diluted glycerol) viscosity lubrication, indicating a slower rate of decrease. No significant effect of shoe material roughness on COFBL or τhydro was identified. Fluid contaminant had a significant effect on both boundary and hydrodynamic lubrication. The change in boundary lubrication coefficient of friction for varying lubricants was primarily attributed to a higher proportion of glycerol molecules, which is a much longer molecule than water, coating the shoe and floor surfaces. The hydrodynamic effect was significant between the glycerol-water lubrication compared to the lower viscosity, 1.5% detergent lubrication, which indicates that the higher viscosity fluids caused a greater rate of friction decrease. This effect is likely due to the wedge term effect of the Reynolds equation. Absence of roughness effects on both boundary and hydrodynamic variables could be due to the soft, shoe material deforming and therefore shoe roughness having a decreased affect on asperity interaction.
Skip Nav Destination
STLE/ASME 2010 International Joint Tribology Conference
October 17–20, 2010
San Francisco, California, USA
Conference Sponsors:
- Tribology Division
ISBN:
978-0-7918-4419-9
PROCEEDINGS PAPER
Effects of Varying Shoe Surface Roughness on COF Between Shoe and Floor Material in the Presence of a Liquid Contaminant
Caitlin Moore,
Caitlin Moore
University of Wisconsin Milwaukee, Milwaukee, WI
Search for other works by this author on:
Kurt Beschorner
Kurt Beschorner
University of Wisconsin Milwaukee, Milwaukee, WI
Search for other works by this author on:
Caitlin Moore
University of Wisconsin Milwaukee, Milwaukee, WI
Kurt Beschorner
University of Wisconsin Milwaukee, Milwaukee, WI
Paper No:
IJTC2010-41179, pp. 49-51; 3 pages
Published Online:
April 14, 2011
Citation
Moore, C, & Beschorner, K. "Effects of Varying Shoe Surface Roughness on COF Between Shoe and Floor Material in the Presence of a Liquid Contaminant." Proceedings of the STLE/ASME 2010 International Joint Tribology Conference. STLE/ASME 2010 International Joint Tribology Conference. San Francisco, California, USA. October 17–20, 2010. pp. 49-51. ASME. https://doi.org/10.1115/IJTC2010-41179
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Analysis of Shoe Friction During Sliding Against Floor Material: Role of Fluid Contaminant
J. Tribol (October,2012)
Effects of Nanostructured Additives on Boundary Lubrication for Potential Artificial Joint Applications
J. Tribol (July,2010)
Understanding the Role of Directional Texture in Tribofilm Evolution
J. Tribol (December,2022)
Related Chapters
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Hydrodynamic Lubrication
Design of Mechanical Bearings in Cardiac Assist Devices
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers