Interfacial friction between cutting tool and work material leads to tool wear during machining, which adversely affects surface integrity of machined components. In addition, more energy is expected to be consumed to accommodate higher loading during machining. Dimensional accuracy and repeatability of the workpiece is also hard to guarantee when machining with worn tools. In this paper, surface integrity of AISI H13 samples milled using the PVD coated inserts is studied. Three levels of tool flank wear (VB = 0, 0.1mm, 0.2mm) were used to cut H13 tool steel in the experiment. At each level of flank wear, the effects of cutting speed, feed, and radial depth-of-cut on surface integrity were investigated respectively. Under a diverse combination of milling parameters, the evolution of surface integrity with tool flank wear was analyzed. A novel on-line optical tool inspection system integrated with CNC machining center was used to inspect the evolution of flank wear with milling time in order to monitor tool wear conditions.
Skip Nav Destination
STLE/ASME 2010 International Joint Tribology Conference
October 17–20, 2010
San Francisco, California, USA
Conference Sponsors:
- Tribology Division
ISBN:
978-0-7918-4419-9
PROCEEDINGS PAPER
The Effects of PVD Coated Tool Flank Wear and Process Parameters on Surface Integrity in Hard Milling AISI H13 Steel
W. Li
The University of Alabama, Tuscaloosa, AL
Y. B. Guo
The University of Alabama, Tuscaloosa, AL
Paper No:
IJTC2010-41216, pp. 239-241; 3 pages
Published Online:
April 14, 2011
Citation
Li, W, & Guo, YB. "The Effects of PVD Coated Tool Flank Wear and Process Parameters on Surface Integrity in Hard Milling AISI H13 Steel." Proceedings of the STLE/ASME 2010 International Joint Tribology Conference. STLE/ASME 2010 International Joint Tribology Conference. San Francisco, California, USA. October 17–20, 2010. pp. 239-241. ASME. https://doi.org/10.1115/IJTC2010-41216
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Directionally Independent Failure Prediction of End-Milling Tools During Pocketing Maneuvers
J. Manuf. Sci. Eng (August,2007)
A Geometrical Simulation System of Ball End Finish Milling Process and Its Application for the Prediction of Surface Micro Features
J. Manuf. Sci. Eng (February,2006)
Related Chapters
Cutting Performance and Wear Mechanism of Cutting Tool in Milling of High Strength Steel 34CrNiMo6
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Accuracy of an Axis
Mechanics of Accuracy in Engineering Design of Machines and Robots Volume I: Nominal Functioning and Geometric Accuracy
Study of the Effect of Machining Parameters on Material Removal Rate and Electrode Wear during Electric Discharge Machining of Mild Steel
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)