Fretting fatigue has consistently been described as an “insidious” fracture process due to the difficulty in modeling and predicting fretting-induced crack initiation. Components can develop fretting fatigue cracks even when they are designed for minimal relative motion, as in the case of a turbine blade root. Vibrations that are typically small enough to be considered negligible in engineering analysis can cause cracks that will lead to component failure. The sliding distance for fretting to occur is loosely defined as tens to hundreds of micrometers. To date, there has not been a good delineation between the fretting motion and gross-sliding regimes. Likewise, it is not well understood when a given component will experience fretting fatigue or pitting (which is associated with gross sliding and is often seen in gear components). Preliminary data suggest that pitting-like cracks can initiate in a hemisphere-on-flat linear reciprocating configuration at a low number of cycles (104) and fretting-sized displacements (200–300μm). Because of the differences between the mechanisms for failure in fretting and pitting, new insight must be developed to determine parameters under which to expect either failure mode. This work seeks to characterize these two forms of failure and to determine the conditions under which fretting or pitting becomes dominant to develop a new tool for the prediction and prevention of moving components.
Skip Nav Destination
STLE/ASME 2010 International Joint Tribology Conference
October 17–20, 2010
San Francisco, California, USA
Conference Sponsors:
- Tribology Division
ISBN:
978-0-7918-4419-9
PROCEEDINGS PAPER
Characterizing and Comparing Fretting Fatigue and Pitting in Low-Amplitude Reciprocating Contact Available to Purchase
Emil Sandoz-Rosado,
Emil Sandoz-Rosado
Columbia University, New York, NY
Search for other works by this author on:
Elon Terrell
Elon Terrell
Columbia University, New York, NY
Search for other works by this author on:
Emil Sandoz-Rosado
Columbia University, New York, NY
Elon Terrell
Columbia University, New York, NY
Paper No:
IJTC2010-41124, pp. 211-213; 3 pages
Published Online:
April 14, 2011
Citation
Sandoz-Rosado, E, & Terrell, E. "Characterizing and Comparing Fretting Fatigue and Pitting in Low-Amplitude Reciprocating Contact." Proceedings of the STLE/ASME 2010 International Joint Tribology Conference. STLE/ASME 2010 International Joint Tribology Conference. San Francisco, California, USA. October 17–20, 2010. pp. 211-213. ASME. https://doi.org/10.1115/IJTC2010-41124
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
High-Temperature Fatigue Properties of Single Crystal Superalloys in Air and Hydrogen
J. Eng. Gas Turbines Power (July,2004)
Microstructure-Sensitive Fatigue Modeling of AISI 4140 Steel
J. Eng. Mater. Technol (April,2014)
Effects of Multiple Cracking on Crack Growth and Coalescence in Contact Fatigue
J. Tribol (July,1997)
Related Chapters
Start-Up, Shutdown, and Lay-Up
Consensus on Pre-Commissioning Stages for Cogeneration and Combined Cycle Power Plants
Compromise between Tensile and Fatigue Strength
New Advanced High Strength Steels: Optimizing Properties
Understanding the Problem
Design and Application of the Worm Gear