A dynamic model of the cage in an oil-lubricated cylindrical roller bearing was developed and the cage whirl has been researched by this model. In model, the forces between elements, especially the effect of EHL (Elastic Hydrodynamic Lubrication) between cage pockets and rollers were fully considered according to the geometry relationship between elements. The effects of variation in clearance ratio, load and bearing operating velocity on cage whirl have been investigated. The results of the effect of cage clearance on cage instability basically accord with the Gupta’s results, but the starting time of the direct contact between cage and guiding race is delayed while the EHL was considered. The effect of normal load is more important than bearing angular velocity on cage whirl.

This content is only available via PDF.
You do not currently have access to this content.