The flow of solid granular material has been proposed as an alternative lubricant to conventional liquid lubricants. Since granular flows are also in numerous industrial and natural processes, they have been the subject of numerous studies. However, it has been a challenge to understand them because of their non-linear and multiphase behavior. There have been several past experiments, which have gained insight into granular flows. For example, previous work by the authors sheared grains in a two-dimensional annular shear cell by varying the velocity and roughness [1]. The present experimental work attempts to further insights from the previous work by specifically studying the interaction between rough surfaces and granular flows when the global solid fraction and grain materials are varied. A two dimensional annular (granular) shear cell, with a stationary outer ring and inner driving wheel, was used for this work. Digital particle tracking velocimetry was used to obtain local granular flow data such as velocity, local solid fraction, and granular temperature. Slip between the driving wall and first layer of granules is also extracted. This slip can be interpreted as momentum transfer or traction performance in granular systems such as wheel-terrain interaction. Parametric studies of global solid fraction and the material of the rough driving surface, attempt to show how these parameters affect the local granular flow properties.

This content is only available via PDF.
You do not currently have access to this content.