This article deals with the finite differential method of static performance of a foil journal gas bearing. A foil bearing is a self acting hydrodynamic device, which separates stationary and rotating components of high speed rotating machinery by a fluid film of air or other gaseous lubricant. The present work concentrates on common approach in foil bearing in calculating the carrying capacity for a given shaft position (figure-1). During this work the external load is fixed and related shaft position is investigated. For steady operating characteristics such as minimum film thickness and load capacity predicted for the foil bearing. The system of governing equation is solved numerically with FDM by a computer program written in the MATLAB computing environment. A generalized hydrodynamic analysis is conducted to systematically analyses the effect like bearing speed is discussed.

This content is only available via PDF.
You do not currently have access to this content.