The feature sizes on Integrated Circuits (ICs) continue to decrease to provide higher device densities and smaller chip designs. To accomplish this, current fabrication and processing technology must be advanced to achieve these goals. In particular, Chemical Mechanical Polishing (CMP), which is used for planarization of wafers and logic circuit components during IC fabrication, can cause severe surface damage to components in the form of delamination or distortion of surface features. CMP utilizes polishing particles suspended between a polymeric pad and the substrate to be polished. To control the process with higher precision the fundamentals of friction between CMP surfaces need to be analyzed. To investigate the friction contributions of the polishing particles in the CMP process, individual CMP abrasive particles are modeled by a silica atomic force microscope (AFM) probe with a radius of curvature on the order of 200 nm that is utilized in a scanning probe microscope (SPM). Lateral forces are measured that occur in simulated polishing of silica substrates and polyurethane pad material in a liquid environment. Results are obtained as a function of pH and environment and are compared with macroscopic friction results obtained using a high precision tribometer with a glass ball.

This content is only available via PDF.
You do not currently have access to this content.