A reduction of vibrations in mechanical seals increases the life of the seals in centrifugal pumps by minimizing fatigue damage. Mechanical seals consist of two smooth seal faces. One face is stationary with respect to the pump. The other rotates. Between the faces a fluid film evaporates as the fluid moves radially outward across the seal face. Ideally, the film evaporates as it reaches the outer surface of the seal faces, thereby preventing leakage from the pump and effectively lubricating the two surfaces. Relative vibrations between the two surfaces affect the fluid film and lead to stresses on the seal faces, which lead to fatigue damage. As the fluid film breaks down, impacts between the two seal faces create tensile stresses on the faces, which cycle at the speed of the motor rotation. These cyclic stresses provide the mechanism leading to fatigue crack growth. The magnitude of the stress is directly related to the rate of crack growth and time to failure of a seal. Related to the stress magnitude, vibration data is related to the life of mechanical seals in pumps.

This content is only available via PDF.
You do not currently have access to this content.