This paper presents the analysis of elastohydrodynamic lubrication (EHL) of two parallel cylinders in line contact with non-Newtonian fluids under oscillatory motion. The effects of transverse harmonic surface roughness are also investigated in the numerical simulation. The time-dependent Reynolds equation uses a power law model for viscosity. The simultaneous system of modified Reynolds equation and elasticity equation with initial conditions was solved using multi-grid multi-level method with full approximation technique. Film thickness and pressure profiles were determined for smooth and rough surfaces in the oscillatory EHL conjunctions, and the film thickness predictions were verified experimentally. For an increase in the applied load on the cylinders, the minimum film thickness calculated numerically becomes smaller. The predicted film thickness is slightly higher than the film thickness obtained experimentally, owing to cavitation that occurred in the experiments. For both hard and soft EHL contacts, the minimum film thickness under oscillatory motion is very thin near the trailing edge of the contact, especially for stiffer surfaces. The surface roughness and power law index of the non-Newtonian lubricant both have significant effects on the film thickness and pressure profile between the cylinders under oscillatory motion.

This content is only available via PDF.
You do not currently have access to this content.