Granular flow behavior is of fundamental interest to the engineering and scientific community because of the prevalence of these flows in the pharmaceutical, agricultural, food service, and powder manufacturing industries. Granular materials exhibit very complex behavior, oftentimes acting as solids and at other times as fluids. This dual nature leads to very complex and rich behavior, which is not yet well understood. Therefore, the present investigation introduces a new technique that can potentially be used to unveil the mystery of granular flow phenomena. To this end, advanced finite element modeling and simulation techniques have been applied to the study of the complex nature of granular flow. More specifically, the explicit dynamic code LS-DYNA has been utilized to gain an understanding of the complex flow nature and collision stresses of granules in a shear cell.

This content is only available via PDF.
You do not currently have access to this content.