Gas film bearings offer unique advantages enabling successful deployment of high-speed micro-turbomachinery. Current applications encompass micro power generators, air cycle machines and turbo expanders. Mechanically complex gas foil bearings are in use; however, their excessive cost and lack of calibrated predictive tools deter their application to mass-produced oil-free turbochargers, for example. The present investigation advances the analysis and experimental validation of hybrid gas bearings with static and dynamic force characteristics desirable in high-speed turbomachinery. These characteristics are adequate load support, good stiffness and damping coefficients, low friction and wear during rotor startup and shutdown, and most importantly, enhanced rotordynamic stability at the operating speed. Hybrid (hydrostatic/hydrodynamic) flexure pivot-tilting pad bearings (FPTPBs) demonstrate superior static and dynamic forced performance than other geometries as evidenced in a high speed rotor-bearing test rig. A computational model including the effects of external pressurization predicts the rotordynamic coefficients of the test bearings and shows good correlation with measured force coefficients, thus lending credence to the predictive model. In general, direct stiffnesses increase with operating speed and external pressurization; while damping coefficients show an opposite behavior. Predicted mass flow rates validate the inherent restrictor type orifice flow model for external pressurization. Measured coast down rotor speeds demonstrate very low-friction operation with large system time constants. Estimated drag torques from the gas bearings validate indirectly the recorded system time constant.
Skip Nav Destination
STLE/ASME 2006 International Joint Tribology Conference
October 23–25, 2006
San Antonio, Texas, USA
Conference Sponsors:
- Tribology Division
ISBN:
0-7918-4259-2
PROCEEDINGS PAPER
Hybrid Flexure Pivot-Tilting Pad Gas Bearings: Analysis and Experimental Validation
L. San Andre´s
L. San Andre´s
Texas A&M University, College Station, TX
Search for other works by this author on:
L. San Andre´s
Texas A&M University, College Station, TX
Paper No:
IJTC2006-12026, pp. 1221-1230; 10 pages
Published Online:
October 2, 2008
Citation
San Andre´s, L. "Hybrid Flexure Pivot-Tilting Pad Gas Bearings: Analysis and Experimental Validation." Proceedings of the STLE/ASME 2006 International Joint Tribology Conference. Part B: Magnetic Storage Tribology; Manufacturing/Metalworking Tribology; Nanotribology; Engineered Surfaces; Biotribology; Emerging Technologies; Special Symposia on Contact Mechanics; Special Symposium on Nanotribology. San Antonio, Texas, USA. October 23–25, 2006. pp. 1221-1230. ASME. https://doi.org/10.1115/IJTC2006-12026
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Rotordynamic Performance of Flexure Pivot Hydrostatic Gas Bearings for Oil-Free Turbomachinery
J. Eng. Gas Turbines Power (October,2007)
Hybrid Flexure Pivot-Tilting Pad Gas Bearings: Analysis and Experimental Validation
J. Tribol (July,2006)
Development of a High Speed Gas Bearing Test Rig to Measure Rotordynamic Force Coefficients
J. Eng. Gas Turbines Power (October,2011)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Summary and Conclusions
Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications
Unbalance
Fundamentals of Rotating Machinery Diagnostics