This paper describes the stiffness and damping properties of liquid crystal film under electric field in a slide bearing. Liquid crystal is known as a homogeneous organic liquid characterized by the long-range order of its molecular orientation. When an electric field is applied to a liquid crystal, the orientational order of molecules becomes parallel to the applied electric field, which causes apparent viscosity variation. Applying liquid crystal as lubricant, a controllable bearing system may be realized by the external electric signal. In this paper, a controllable sliding bearing system in which liquid crystal was applied as lubricant was constructed and its controllability and dynamic properties were studied experimentally. In the present bearing system, a sinusoidal load was applied to the bearing pad by a magnetic exciter and the equivalent spring and damping constant were identified under various electric field, sliding velocity and film thickness. The results show that the applied electric field strength has little effects on the equivalent spring constant of the liquid crystal film, whereas it has large effects on the damping properties.
Skip Nav Destination
STLE/ASME 2006 International Joint Tribology Conference
October 23–25, 2006
San Antonio, Texas, USA
Conference Sponsors:
- Tribology Division
ISBN:
0-7918-4259-2
PROCEEDINGS PAPER
Stiffness and Damping Coefficients of Liquid Crystal Film Under Electric Field
Yoshiki Matsumura,
Yoshiki Matsumura
Hitotsubashi University, Kunitachi, Japan
Search for other works by this author on:
Toshihiko Shiraishi,
Toshihiko Shiraishi
Yokohama National University, Yokohama, Japan
Search for other works by this author on:
Shin Morishita
Shin Morishita
Yokohama National University, Yokohama, Japan
Search for other works by this author on:
Yoshiki Matsumura
Hitotsubashi University, Kunitachi, Japan
Toshihiko Shiraishi
Yokohama National University, Yokohama, Japan
Shin Morishita
Yokohama National University, Yokohama, Japan
Paper No:
IJTC2006-12124, pp. 385-390; 6 pages
Published Online:
October 2, 2008
Citation
Matsumura, Y, Shiraishi, T, & Morishita, S. "Stiffness and Damping Coefficients of Liquid Crystal Film Under Electric Field." Proceedings of the STLE/ASME 2006 International Joint Tribology Conference. Part A: Tribomaterials; Lubricants and Additives; Elastohydrodynamic Lubrication; Hydrodynamic Lubrication and Fluid Film Bearings; Rolling Element Bearings; Engine Tribology; Machine Components Tribology; Contact Mechanics. San Antonio, Texas, USA. October 23–25, 2006. pp. 385-390. ASME. https://doi.org/10.1115/IJTC2006-12124
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Development of an Electrically Controllable Damper Using a Liquid Crystal
J. Vib. Acoust (July,1996)
Local Heat Transfer Measurements in Microchannels Using Liquid Crystal Thermography: Methodology Development and Validation
J. Heat Transfer (July,2006)
On the Evolution of Passive Magnetic Bearings
J. Tribol (April,2022)
Related Chapters
View Angle Characters of the New Type LCD
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Materials for Micro and Nanotribology: Liquid Crystals, Fluid Fims and Other Lubricants
Micro and Nanotribology