The simulation strategy described in this paper provides an alternative to conventional CFD post-processing to estimate exhaust NOX emissions. The method first analyzes a CFD furnace simulation to specify temperature histories and mixing rates. Then the bulk flow patterns are represented with an equivalent network of idealized reactor elements. Detailed reaction mechanisms are then applied over the reactor network, including the most fully validated reaction mechanisms for coal devolatilization and char oxidation and complete elementary reaction mechanisms for chemistry in the gas phase and in soot. The analysis predicted the NOX emissions from 1.7 MWt pilotscale flames of coal and coal/biomass blends within experimental uncertainty over a broad range of O2 concentrations, with and without staging. The predicted unburned carbon emissions were qualitatively correct, but char reactivity parameters would need to be specified in a one-point calibration for quantitative predictions. The analysis also characterized distinctive chemistry within the flame core, a mixing layer for secondary air entrainment, an overfire air zone, and a char burnout zone. The main practical benefit of the mechanistic complexity is that simulations based on detailed mechanisms require fewer parameter adjustments than CFD simulations whenever different fuels are considered.
Skip Nav Destination
2002 International Joint Power Generation Conference
June 24–26, 2002
Scottsdale, Arizona, USA
Conference Sponsors:
- Power Division
ISBN:
0-7918-3617-7
PROCEEDINGS PAPER
Advanced CFD Post-Processing for Pulverized Fuel Flame Structure and Emissions
Stephen Niksa,
Stephen Niksa
Niksa Energy Associates, Belmont, CA
Search for other works by this author on:
Gui-Su Liu,
Gui-Su Liu
Niksa Energy Associates, Belmont, CA
Search for other works by this author on:
Larry G. Felix,
Larry G. Felix
Southern Research Institute, Birmingham, AL
Search for other works by this author on:
P. Vann Bush
P. Vann Bush
Southern Research Institute, Birmingham, AL
Search for other works by this author on:
Stephen Niksa
Niksa Energy Associates, Belmont, CA
Gui-Su Liu
Niksa Energy Associates, Belmont, CA
Larry G. Felix
Southern Research Institute, Birmingham, AL
P. Vann Bush
Southern Research Institute, Birmingham, AL
Paper No:
IJPGC2002-26136, pp. 777-783; 7 pages
Published Online:
February 24, 2009
Citation
Niksa, S, Liu, G, Felix, LG, & Vann Bush, P. "Advanced CFD Post-Processing for Pulverized Fuel Flame Structure and Emissions." Proceedings of the 2002 International Joint Power Generation Conference. 2002 International Joint Power Generation Conference. Scottsdale, Arizona, USA. June 24–26, 2002. pp. 777-783. ASME. https://doi.org/10.1115/IJPGC2002-26136
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Optimization of Co-Firing Burners
J. Thermal Sci. Eng. Appl (December,2016)
Modeling on Combustion Characteristics of Biocoalbriquettes
J. Energy Resour. Technol (March,2001)
Technoeconomic Analysis of Microalgae Cofiring Process for Fossil Fuel-Fired Power Plants
J. Energy Resour. Technol (March,2011)
Related Chapters
Energy Options and Terms: An Introduction
Energy Supply and Pipeline Transportation: Challenges & Opportunities
Introduction to Pipeline Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition
Numerical Simulation Research on a Fixed Bed Gasifier
International Conference on Information Technology and Management Engineering (ITME 2011)