At the start of this new century, environmental regulations and free-market economics are becoming the key drivers for the electricity generating industry. Advances in Gas Turbine (GT) technology, allied with integration and refinement of Heat Recovery Steam Generators (HRSG) and Steam Turbine (ST) plant, have made Combined Cycle installations the most efficient of the new power station types. This potential can also be realized, to equal effect, by adding GT’s and HRSG’s to existing conventional steam power plants in a so-called ‘repowering’ process. This paper presents the economical and environmental considerations of retrofitting the steam turbine within repowering schemes. Changing the thermal cycle parameters of the plant, for example by deletion of the feed heating steambleeds or by modified live and reheat steam conditions to suit the combined cycle process, can result in off-design operation of the existing steam turbine. Retrofitting the steam turbine to match the combined cycle unit can significantly increase the overall cycle efficiency compared to repowering without the ST upgrade. The paper illustrates that repowering, including ST retrofitting, when considered as a whole at the project planning stage, has the potential for greater gain by allowing proper plant optimization. Much of the repowering in the past has been carried out without due regard to the benefits of re-matching the steam turbine. Retrospective ST upgrade of such cases can still give benefit to the plant owner, especially when it is realized that most repowering to date has retained an unmodified steam turbine (that first went into operation some decades before). The old equipment will have suffered deterioration due to aging and the steam path will be to an archaic design of poor efficiency. Retrofitting older generation plant with modern leading-edge steam-path technology has the potential for realizing those substantial advances made over the last 20 to 30 years. Some examples, given in the paper, of successfully retrofitted steam turbines applied in repowered plants will show, by specific solution, the optimization of the economics and benefit to the environment of the converted plant as a whole.
Skip Nav Destination
2002 International Joint Power Generation Conference
June 24–26, 2002
Scottsdale, Arizona, USA
Conference Sponsors:
- Power Division
ISBN:
0-7918-3617-7
PROCEEDINGS PAPER
Repowering and Retrofitting
Andreas Pickard
Andreas Pickard
Alstom, Baden, Switzerland
Search for other works by this author on:
Andreas Pickard
Alstom, Baden, Switzerland
Paper No:
IJPGC2002-26059, pp. 485-493; 9 pages
Published Online:
February 24, 2009
Citation
Pickard, A. "Repowering and Retrofitting." Proceedings of the 2002 International Joint Power Generation Conference. 2002 International Joint Power Generation Conference. Scottsdale, Arizona, USA. June 24–26, 2002. pp. 485-493. ASME. https://doi.org/10.1115/IJPGC2002-26059
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
Repowering Application Considerations
J. Eng. Gas Turbines Power (October,1992)
Start-Up Optimization of a CCGT Power Station Using Model-Based Gas Turbine Control
J. Eng. Gas Turbines Power (April,2019)
Degradation Effects on Combined Cycle Power Plant Performance—Part III: Gas and Steam Turbine Component Degradation Effects
J. Eng. Gas Turbines Power (April,2004)
Related Chapters
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Performance Testing of Combined Cycle Power Plant
Handbook for Cogeneration and Combined Cycle Power Plants, Second Edition