Recent advances in diagnostic methods are providing new capacity for detailed measurement of turbulent, reacting flows in which heat transfer is dominant. Radiation typically becomes dominant in flames containing soot and/or with sufficient physical size, so is important in many flames of practical significance. The presence of particles, including soot, increases the coupling between the turbulence, chemistry and radiative heat transfer processes. Particles also increase the difficulties of laser-based measurements by increasing the interferences to the signal and the attenuation of the beam. The paper reviews recent advances in techniques to measure temperature, mixture fraction, soot volume fraction, velocity, particle number density and the scattered, absorbed and transmitted components of radiation propagation through particle laden systems.

This content is only available via PDF.
You do not currently have access to this content.