Complex macroscale and microscale heat and mass transfer phenomena encountered in several thermal energy storage and transport systems are discussed. Thermal storage and transport systems involving ice slurries and nanoemulsions of phase change materials can be used for either cooling or heating applications or both, which can contribute to the reduced usage of electricity during peak hours. But heat and mass transfer and stability issues are encountered in the production, transport and storage of the heat storage media. Both the heat transfer enhancement effect and detrimental effects such as Ostwald ripening and supercooling will be discussed. Another interesting microscale phenomenon recently encountered in energy transport devices such as heat pipes is the enhancement of heat transport with the use of self-rewetting fluids. Critical heat fluxes in boiling can be enhanced by up to 300% and this helps prevent liquid dryout at high heat fluxes in different types of heat pipes. Both the nature of the enhancement effect and possible mechanisms will be discussed.

This content is only available via PDF.
You do not currently have access to this content.