Theoretical analysis and experimental investigations have shown that the mean heat fluxes in turbulent gaseous flows are influenced not only by the mean scalar fields (temperature and molar fraction of the species), but also by the scalar fluctuations. It is widely recognized that the increase of radiative fluxes in comparison with laminar flows may exceed 100%. This interaction between turbulence and radiation is mainly due to the non-linearity between radiative emission and temperature. It is particularly important in reactive flows, since temperature fluctuations are typically higher in these flows than in non-reactive ones. In this article, a survey of the theory concerning turbulence-radiation interaction (TRI) is presented, along with applications in numerical simulations. We firstly present experimental and theoretical fundamentals on TRI. Then, direct numerical simulation and stochastic methods are addressed. Although they provide reliable information on TRI, they are too computationally demanding for practical applications. We will then focus on methods based on the solution of the time-averaged form of the conservation equations. Although many different approaches are available, we will concentrate on two methods. One is based on the solution of the time-averaged form of the radiative transfer equation using the optically thin fluctuation approximation, and a combustion model based on a prescribed probability density function (pdf) approach. The second one is based on the photon Monte Carlo method for radiative transfer calculations in media represented by discrete particle fields, and a combustion model based on the Monte Carlo solution of the transport equation for the joint pdf of scalars. Finally, the role of TRI in large eddy simulation is discussed, and the main consequences of TRI in combustion systems are summarized.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4943-9
PROCEEDINGS PAPER
Turbulence Radiation Interaction: From Theory to Application in Numerical Simulations
Pedro J. Coelho
Pedro J. Coelho
Technical University of Lisbon, Lisboa, Portugal
Search for other works by this author on:
Pedro J. Coelho
Technical University of Lisbon, Lisboa, Portugal
Paper No:
IHTC14-23339, pp. 251-270; 20 pages
Published Online:
March 1, 2011
Citation
Coelho, PJ. "Turbulence Radiation Interaction: From Theory to Application in Numerical Simulations." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 8. Washington, DC, USA. August 8–13, 2010. pp. 251-270. ASME. https://doi.org/10.1115/IHTC14-23339
Download citation file:
38
Views
Related Proceedings Papers
Related Articles
Turbulence–Radiation Interaction: From Theory to Application in Numerical Simulations
J. Heat Transfer (March,2012)
Investigation of Sub-Grid Scale Turbulence-Radiation Interaction Effects on Turbulence Energy Transport and Varying Thermophysical Properties Using Large Eddy Simulation
J. Energy Resour. Technol (January,2024)
Numerical Study of the Turbulent Flow Inside an ORACLES Configuration
J. Appl. Mech (September,2012)
Related Chapters
An Investigation of Tip-Vortex Turbulence Structure using Large-Eddy Simulation
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Investigation of Sheet to Cloud Transition Due to the Propagation of Condensation Fronts Over a Sharp Wedge Using Large Eddy Simulations
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Large Eddy Simulation of a Collapsing Vapor Bubble Containing Non-Condensable Gas
Proceedings of the 10th International Symposium on Cavitation (CAV2018)