This study is concerned with pyroelectric energy conversion to directly convert waste heat into electricity. The pyroelectric effect refers to the flow of charges to or from the surface of a material upon heating or cooling. A prototypical pyroelectric energy converter was designed, built, and tested. It performed the Olsen cycle consisting of two isothermal and two isovoltage processes in the charge-voltage diagram. Co-polymer poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films sandwiched between metallic electrodes were used as the pyroelectric elements. Their temperature oscillation, charge, and voltage along with the overall heat input and output were measured experimentally. Then, the electrical power generated and the energy efficiency of the device were computed. The effects of channel width, frequency, and stroke length on temperature swing, heat input, and energy and power densities were investigated. Reducing the channel width and increasing the stroke length had the largest effect on device performance. A maximum energy density of 130 J/L of P(VDF-TrFE) was achieved at 0.061 Hz frequency with temperature oscillating between 69.3 and 87.6°C. Furthermore, a maximum power density of 10.7 W/L of P(VDF-TrFE) was obtained at 0.12 Hz between 70.5 and 85.3°C. In both cases, the voltages in the Olsen cycle were 923 and 1732 V imposed on a 45.7 microns thick 60/40 P(VDF-TrFE) films. To the best of our knowledge, this is the largest energy density achieved by any pyroelectric energy converter using P(VDF-TrFE). It also matches performances reported in the literature for more expensive lead zirconate stannum titanate ceramic films operated at higher temperatures between 110 and 185°C.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4943-9
PROCEEDINGS PAPER
Improved Pyroelectric Energy Converter for Waste Heat Energy Harvesting Using Co-Polymer P(VDF-TrFE) and Olsen Cycle
Hiep Nguyen,
Hiep Nguyen
University of California, Los Angeles, Los Angeles, CA
Search for other works by this author on:
Ashcon Navid,
Ashcon Navid
University of California, Los Angeles, Los Angeles, CA
Search for other works by this author on:
Laurent Pilon
Laurent Pilon
University of California, Los Angeles, Los Angeles, CA
Search for other works by this author on:
Hiep Nguyen
University of California, Los Angeles, Los Angeles, CA
Ashcon Navid
University of California, Los Angeles, Los Angeles, CA
Laurent Pilon
University of California, Los Angeles, Los Angeles, CA
Paper No:
IHTC14-23412, pp. 183-192; 10 pages
Published Online:
March 1, 2011
Citation
Nguyen, H, Navid, A, & Pilon, L. "Improved Pyroelectric Energy Converter for Waste Heat Energy Harvesting Using Co-Polymer P(VDF-TrFE) and Olsen Cycle." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 8. Washington, DC, USA. August 8–13, 2010. pp. 183-192. ASME. https://doi.org/10.1115/IHTC14-23412
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Harvesting Nanoscale Thermal Radiation Using Pyroelectric Materials
J. Heat Transfer (September,2010)
Dynamic Model of a Vortex-Induced Energy Converter
J. Energy Resour. Technol (November,2016)
Design Optimization and Performance Analysis of a Multi-Kilowatt Thermoacoustic Electric Generator Using DeltaEC Model
J. Energy Resour. Technol (October,2021)
Related Chapters
Physiology of Human Power Generation
Design of Human Powered Vehicles
Threshold Functions
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential