Using the analogy between heat and mass transfer processes, the recently developed entransy theory is extended in this paper to tackle the coupled heat and mass transfer processes so as to analyze and optimize the performance of evaporative cooling systems. We first introduce a few new concepts including the moisture entransy, moisture entransy dissipation, and the thermal resistance in terms of the moisture entransy dissipation. Thereinafter, the moisture entransy is employed to describe the endothermic ability of a moist air. The moisture entransy dissipation on the other hand is used to measure the loss of the endothermic ability, i.e. the irreversibility, in the coupled heat and mass transfer processes, which consists of three parts: (1) the sensible heat entransy dissipation, (2) the latent heat entransy dissipation, and (3) the entransy dissipation induced by a temperature potential. And then the new thermal resistance, defined as the moisture entransy dissipation rate divided by the squared refrigerating effect output rate, is recommended as an index to effectively reflect the performance of the evaporative cooling system. Meanwhile, a minimum thermal resistance law for optimizing the evaporative cooling systems is developed. In the end, several direct and indirect evaporative cooling processes are analyzed to illustrate the applications of the proposed concepts.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4943-9
PROCEEDINGS PAPER
Mass Nature of Heat and Its Application VII: Coupled Heat and Mass Transfer Optimization Based on the Entransy Theory
Moran Wang,
Moran Wang
Los Alamos National Laboratory, Los Alamos, NM
Search for other works by this author on:
Zeng-Yuan Guo
Zeng-Yuan Guo
Tsinghua University, Beijing, China
Search for other works by this author on:
Qun Chen
Tsinghua University, Beijing, China
Moran Wang
Los Alamos National Laboratory, Los Alamos, NM
Ning Pan
University of California, Davis, CA
Zeng-Yuan Guo
Tsinghua University, Beijing, China
Paper No:
IHTC14-22413, pp. 141-150; 10 pages
Published Online:
March 1, 2011
Citation
Chen, Q, Wang, M, Pan, N, & Guo, Z. "Mass Nature of Heat and Its Application VII: Coupled Heat and Mass Transfer Optimization Based on the Entransy Theory." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 8. Washington, DC, USA. August 8–13, 2010. pp. 141-150. ASME. https://doi.org/10.1115/IHTC14-22413
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
Latent Heat Fluxes Through Soft Materials With Microtruss Architectures
J. Heat Transfer (April,2008)
Heat and Mass Transfer From Freely Falling Drops
J. Heat Transfer (February,1976)
Thermal Performance Optimization of Radio Frequency Packages for Wireless Communication
J. Electron. Packag (December,2004)
Related Chapters
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Pool Boiling
Thermal Management of Microelectronic Equipment, Second Edition
Effects of Frequency on the Mechanical Response of Two Composite Materials to Fatigue Loads
Fatigue of Composite Materials