The vertical and horizontal frame members that often protrude from the inner surface of a window can, in some situations, have a significant effect on the convective heat transfer rate from the inner (room-side) surface of the window to the room. The purpose of the present numerical study was to determine, in a basic way, how the relative size of a single horizontal frame member mounted in the center of the window affects this convective heat transfer rate. A recessed window has been considered. The flow has been assumed to be steady and both laminar and turbulent flows have been considered. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces, this being dealt with using the Boussinesq approach. The governing equations have been solved using the FLUENT commercial cfd code. The k-epsilon turbulence model with standard wall functions and with buoyancy force effects fully accounted for has been used in the calculations. The solution has the following parameters: the Rayleigh number, the Prandtl number, the dimensionless horizontal distance between the inner window surface and the inner surface of the wall in which the window is mounted (the dimensionless recess depth), and the dimensionless width and depth of the frame member. Results have only been obtained for a Prandtl number of 0.74, which is effectively the value for air, and for single values of the dimensionless window recess depth and of the dimensionless frame height. The effects of the other dimensionless variables on the window Nusselt number have been numerically studied.

This content is only available via PDF.
You do not currently have access to this content.