In this paper the solid/liquid phase change heat transfer in porous materials (metal foams and expanded graphite) at low and high temperatures is experimentally investigated, in an attempt to examine the feasibility of using metal foams to enhance the heat transfer capability of phase change materials for use with both the low and high temperature thermal energy storage systems. In this research, the organic commercial paraffin wax and inorganic hydrate calcium chloride hydrate salts were employed as the low-temperature materials, while the sodium nitrate is used as the high-temperature PCM in the experiment. The heat transfer characteristics of these PCMs embedded with open-cell metal foams were studied experimentally. The composites of paraffin and expanded graphite with different graphite mass ratios, namely, 3%, 6% and 9%, were also made and the heat transfer performances of these composites were tested and compared with metal foams. Overall metal foams can provide better heat transfer performance than expanded graphite due to their continuous inter-connected structures. But the porous materials can suppress the natural convection effect in liquid zone, particularly for the PCMs with low viscosities, thereby leading to the different heat transfer performance at different regimes (solid, solid/liquid and liquid regions). This implies that the porous materials don’t necessarily mean they can always enhance heat transfer in every regime.

This content is only available via PDF.
You do not currently have access to this content.