The hydrodynamics of molten metal jet in a coolant pool is characterized by the presence of complex and diverse fluid structures whose formation is facilitated by various modes of instabilities acting on the fluid-fluid interface and the bulk material. The large spectrum of scales involved in these processes and the related non-linearities cloud a clear understanding of the associated physical phenomena. In order to overcome these difficulties, a numerical model has been developed in the current work, which aims to simulate the hydrodynamics, fragmentation and solidification of a molten metal jet in the coolant pool. The work uses an axisymmetric flow solver with the Volume of Fluid (VOF) interface tracking model to evaluate the macro features of the molten metal jet dynamics and to predict the evolution of interfacial instabilities. At the same time, the phenomena at the micro scale is predicted by a Lagrangian particle tracking model that is used to capture the dynamics and the heat interactions of the fragmented droplets formed from the disintegration of molten metal jet. The coupling between the two models is achieved by converting the molten fluid from VOF model into equivalent swarm of particles at the jet breakup length. The ability of the current coupled model is demonstrated using a sample test problem involving the dynamics of molten woods metal jet in a water pool.

This content is only available via PDF.
You do not currently have access to this content.