The complex interaction of forced and natural convection depends on flow regime and flow direction. Aiding flow occurs when both driving forces act in the same direction (heating upflow fluid and cooling downflow fluid); opposing flow occurs when they act in different directions (cooling upflow fluid and heating downflow fluid). This paper discusses the buoyancy effect on forced convection for single-phase flows in vertical tubes. To evaluate mixed convection methods, Heat Transfer Research, Inc. (HTRI) recently collected water and propylene glycol data in two vertical tubes of different tube diameters. The data cover wide ranges of Reynolds, Grashof, and Prandtl numbers and differing ratios of heated tube length to diameter in laminar, transition, and turbulent forced flow regimes. In this paper, we focus on mixed convection with Reynolds numbers higher than 2000. Using HTRI data and experimental data in literature, we demonstrate that natural convection can greatly increase or decrease the convective heat transfer coefficient. In addition, we establish that natural convection should not be neglected if the Richardson number is higher than 0.01 or the mixed turbulent parameter Ra1/3/(Re0.8 Pr0.4) is higher than 0.05 even in forced turbulent flow with Reynolds numbers greater than 10000. High resolution Reynolds-Averaged Navier-Stokes (RANS) simulations of several experimental conditions confirm the importance of the buoyancy effect on the production of turbulence kinetic energy. We also determine that flow regime maps are required to predict the mixed convection heat transfer coefficient accurately.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4942-2
PROCEEDINGS PAPER
Mixed Convection in Vertical Tubes: High Reynolds Number
LiDong Huang,
LiDong Huang
Heat Transfer Research, Inc., College Station, TX
Search for other works by this author on:
Kevin J. Farrell
Kevin J. Farrell
Heat Transfer Research, Inc., College Station, TX
Search for other works by this author on:
LiDong Huang
Heat Transfer Research, Inc., College Station, TX
Kevin J. Farrell
Heat Transfer Research, Inc., College Station, TX
Paper No:
IHTC14-23266, pp. 269-276; 8 pages
Published Online:
March 1, 2011
Citation
Huang, L, & Farrell, KJ. "Mixed Convection in Vertical Tubes: High Reynolds Number." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 7. Washington, DC, USA. August 8–13, 2010. pp. 269-276. ASME. https://doi.org/10.1115/IHTC14-23266
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Bouyancy Effect on Forced Convection in Vertical Tubes at High Reynolds Numbers
J. Thermal Sci. Eng. Appl (December,2010)
Liquid Immersion Cooling of a Longitudinal Array of Discrete Heat Sources in Protruding Substrates: I—Single-Phase Convection
J. Electron. Packag (March,1992)
An Experimental Study of Forced Heat Convection in Concentric and Eccentric Annular Channels
J. Heat Transfer (January,2016)
Related Chapters
Mixed-Up Convection
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Extended Surfaces
Thermal Management of Microelectronic Equipment, Second Edition