An experimental investigation has been done to elucidate the effects of mass flux G, degree of subcooling ΔTsub and initial solid temperature Tb0 on transient spray cooling of a downward facing φ89 mm hot block surface. The spray impact diameter was adjusted to φ110mm and φ36mm which simulate uniform and non-uniform spray cooling of the surface. The block made of copper, brass and carbon steel at an initial temperature of 200–500 °C was cooled with subcooled water and ethanol spray. The subcooling was from 10 to 80 K and the mass flux was from 1 to 72 kg/m2s. Surface temperature and surface heat flux were evaluated with an axisymmetric 2D inverse heat conduction analysis. A transient transition regime was characterized with a wetting temperature and a quenching temperature. The wetting and quenching temperatures were correlated fairly with GΔTsub. Effects of G, ΔTsub, Tb0 and a thermal inertia of the solid (ρcλ)s on a maximum heat flux are evaluated.

This content is only available via PDF.
You do not currently have access to this content.