Plasma spraying using solution precursors is a relative new thermal spray technology which enables to elaborate finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a plasma jet either as a liquid stream or gas atomized droplets. Solution droplets or the stream interacts with the plasma jet and break up into fine droplets. The solvent vaporizes very fast as the droplets travel downstream followed by precipitation and pyrolysis. Depending on the heating and trajectory history of droplets, different states of particles are formed and impact on the substrate to generate coatings. The deposition process and the properties of the coating are extremely sensitive to the process parameters, such as torch operating conditions, injection modes, injection parameters, and substrate temperatures. This paper describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in a plasma jet. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet. The temperature and velocity fields of the jet are predicted. The effect of the injection angle, injection velocity, the torch operating power and the substrate position on the heating and trajectory of injected droplets is discussed. The particle/droplet size distributions on the substrate are predicted for different process parameters.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4941-5
PROCEEDINGS PAPER
Numerical Simulation of the Injection of Solution Sprays Into a Plasma Jet
Y. G. Shan,
Y. G. Shan
University of Shanghai for Science and Technology, Shanghai, China
Search for other works by this author on:
Y. Hu,
Y. Hu
University of Shanghai for Science and Technology, Shanghai, China
Search for other works by this author on:
X. Qi
X. Qi
University of Shanghai for Science and Technology, Shanghai, China
Search for other works by this author on:
Y. G. Shan
University of Shanghai for Science and Technology, Shanghai, China
Y. Hu
University of Shanghai for Science and Technology, Shanghai, China
X. Qi
University of Shanghai for Science and Technology, Shanghai, China
Paper No:
IHTC14-22542, pp. 717-722; 6 pages
Published Online:
March 1, 2011
Citation
Shan, YG, Hu, Y, & Qi, X. "Numerical Simulation of the Injection of Solution Sprays Into a Plasma Jet." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 6. Washington, DC, USA. August 8–13, 2010. pp. 717-722. ASME. https://doi.org/10.1115/IHTC14-22542
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Plasma-Spray Coating Processes: Physico-Mathematical Characterization
J. Eng. Power (July,1980)
Modeling of Thermophysical Processes in Liquid Ceramic Precursor Droplets Heated by Monochromatic Irradiation
J. Heat Transfer (July,2008)
Thermal Spray Coating on Polymeric Composite for De-Icing and Anti-Icing Applications
J. Manuf. Sci. Eng (October,2021)
Related Chapters
Further Applications of Spreading Resistance
Thermal Spreading and Contact Resistance: Fundamentals and Applications
Numerical Simulation of Nucleate Spray Cooling: Effect of Droplet Impact on Bubble Growth and Heat Transfer in a Thin Liquid Film
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
A Calibrated Method for Crystallinity Determination of Hydroxylapatite Coatings
Characterization and Performance of Calcium Phosphate Coatings for Implants