Binary nanoemulsions, nano-sized oil-droplet suspensions in binary solution (H2O/LiBr), are developed to enhance the heat and mass transfer performance of absorption refrigeration systems. In this study, a novel four-step method is proposed to prepare the stable oil-in-binary solution (O/S) emulsion. To stabilize the nanoemulsions in a strong electrolyte, a polymeric stabilizer (Gum Arabic) is used as a steric stabilizer. The droplet size and the thermal conductivity of binary nanoemulsions are measured by the dynamic light scattering method and the transient hot-wire method, respectively. It is concluded that the ratio of 2:1 (oil:surfactant) is the best condition for distribution stability. It is also found that the measured thermal conductivity of the oil-in-water nanoemulsion enhances up to 6.4% at 0.1 vol% of oil, and the binary nanoemulsion enhances up to 3.6% at 1.0 vol% of oil in 30 wt% H2O/LiBr compared with the estimated one from the Maxwell’s model. This result is compared with electric conductivity of LiBr solution and it is found both conductivities have similar trend. It is finally proposed that the thermal conductivity of the binary nanoemulsion could be enhanced by adding nano-sized droplets of n-decane oil, which has a lower thermal conductivity than that of the base fluid.

This content is only available via PDF.
You do not currently have access to this content.