This work reports an experimental study of convective heat transfer of aqueous alumina nanofluids in a horizontal microchannel under laminar flow condition. The variation of local heat transfer coefficients, in both entrance and developed flow regime, is obtained as a function of axial distance. The heat transfer coefficient of nanofluids is found to be dependent upon not only nanoparticle concentration but also mass flow rate. Different to the behavior in conventional-sized channels, the major heat transfer coefficient enhancement is observed in fully developed region in microchannels. Discussions of the results suggest that the heterogeneous nature of nanoparticle flow should be considered.

This content is only available via PDF.
You do not currently have access to this content.