We have investigated heat and mass transport in single-walled carbon nanotubes (SWNTs) using molecular dynamics methods. Particular attention was paid on the non-equilibrium dynamics at the interface between SWNT and other materials, which strongly manifests in nanoscale. In the first part, we have investigated the heat transport through the interface between SWNTs and surrounding argon matrices in liquid and solid phases. By analyzing the energy relaxation from SWNT to the matrices using non-stationary molecular dynamics simulations, elastic and inelastic thermal energy transports across the interface were separately quantified. The result reveals that the elastic interaction transports energy much faster than the inelastic one, but carries much smaller energy due to slow intra-SWNT phonon relaxation. In the second part, we have investigated a possibility to utilize nonequilibrium thermal interface to transport water through an SWNT. By applying the longitudinal temperature gradient to the SWNT, it is demonstrated that the water cluster is efficiently driven at average acceleration proportional to the temperature gradient. However, the transport simulations with a junction of two different SWNTs suggest that an angstrom diameter difference may result in a significant drag for small diameter SWNTs.

This content is only available via PDF.
You do not currently have access to this content.