MCM-41 consists of a hexagonal array of long, unconnected cylindrical pores with diameters that can be tailored within the range 1.6–10nm. As a porous silica nano-material, MCM-41 is thought to have a special thermal conductivity and is a promising porous substrate for mesoporous composites with high or low thermal conductivity. The Equilibrium Molecular Dynamics numerical simulations of thermal conductivity of MCM-41 are performed in this paper. FB potential equation and procedure of annealing are employed to get the structure of MCM-41. The Green-Kubo method is used to calculate the thermal conductivity of MCM-41. At the same time, the kinetic method is used to predict the thermal conductivity of MCM-41 for comparison. It turns out that the shell thermal conductivities of MCM-41 distribute within a reasonable range and increases linearly as porosity decreases, approaching the thermal conductivity of aerogels.

This content is only available via PDF.
You do not currently have access to this content.