Heat transfer enhancement of carbon-nano fibers (CNF’s) attached on a wall surface within a micro-channel is investigated in this paper using a three-dimensional numerical method. Carbon-nanofibers, also known as graphite nanofibers, can be grown by catalytic decomposition of certain hydrocarbon at a metal surface such as iron, cobalt, nickel and some of their alloys. Typical sizes of CNF’s vary between 2 and 100 nm, with lengths ranging from 5 to 100 μm. Experimental research has shown that the presence of carbon-nano fibers grown on a surface of a fine metallic structure can enhance heat transfer by 50% [2]. These fibers influence the fluid flow, and enlarge the heat exchanging surface. The enhancement depends very much on the carbon-nano fibers density and on the structure of the carbon-nano fibers itself. This numerical study is giving directions in optimizing this new material. A random generation growth model has been developed to generate a stochastic structure of the CNF layer. Next to this a 3D Lattice Boltzmann model has been developed to simulate the heat transfer in a micro-channel flow with the surface covered with CNF’s. The 3D Lattice Boltzmann model has been verified on microchannel flow with heat transfer. Results of the conjugate heat transfer (including CNF’s at the wall) will be presented. The influence of carbon-nano fibers density and their structure on the heat transfer coefficient through the carbon-nano fibers layer is determined.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4941-5
PROCEEDINGS PAPER
Numerical Modeling of New Heat Exchanger Materials
Nikola R. Pelevic´,
Nikola R. Pelevic´
University of Twente, Enschede, The Netherlands
Search for other works by this author on:
Theo H. van der Meer
Theo H. van der Meer
University of Twente, Enschede, The Netherlands
Search for other works by this author on:
Nikola R. Pelevic´
University of Twente, Enschede, The Netherlands
Theo H. van der Meer
University of Twente, Enschede, The Netherlands
Paper No:
IHTC14-22360, pp. 39-47; 9 pages
Published Online:
March 1, 2011
Citation
Pelevic´, NR, & van der Meer, TH. "Numerical Modeling of New Heat Exchanger Materials." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 6. Washington, DC, USA. August 8–13, 2010. pp. 39-47. ASME. https://doi.org/10.1115/IHTC14-22360
Download citation file:
4
Views
0
Citations
Related Proceedings Papers
Related Articles
Forced Convection Heat Transfer in Spray Formed Copper and Nickel Foam Heat Exchanger Tubes
J. Heat Transfer (June,2012)
Experimental Study on Heat Transfer and Pressure Drop of Recuperative Heat Exchangers Using Carbon Foam
J. Heat Transfer (September,2010)
Related Chapters
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Novel and Efficient Mathematical and Computational Methods for the Analysis and Architecting of Ultralight Cellular Materials and their Macrostructural Responses
Advances in Computers and Information in Engineering Research, Volume 2
Hydrodynamic Mass, Natural Frequencies and Mode Shapes
Flow-Induced Vibration Handbook for Nuclear and Process Equipment