Study of fluid flow characteristics at microscale level is gaining importance with shrinking device sizes. Better understanding of fluid flow and heat transfer in microchannels will have important implications in biomedical industry, MEMS, electronic chip cooling, heat exchangers, and microfluidic devices. Also, due to short lengths employed in microchannels, entrance header effects can be significant and needs to be investigated. In this work, three dimensional model of microchannels, with aspect ratios (α = a/b) ranging from 0.1 to 10, are numerically simulated using CFD software, FLUENT. Heat transfer effects in the entrance region of microchannel are presented by plotting average Nusselt number as a function of non-dimensional thermal entrance length x*. The numerical simulations with both circumferential and axial uniform heat flux (H2) boundary conditions were performed for four wall, three wall and two wall cases. Large numerical data sets, generated in this work for rectangular cross sectional microchannels for three walls and two walls H2 boundary condition, can provide better understanding and insight into the transport processes in the microchannel.

This content is only available via PDF.
You do not currently have access to this content.