This paper presents new experimental flow boiling pressure drop results in a microscale tube. The experimental data were obtained under diabatic conditions in a horizontal smooth tube with internal diameter of 2.3 mm. Experiments were performed with R134a as working fluid, mass velocities ranging from 100 to 600 kg/m2s, heat flux ranging from 10 to 55 kW/m2, saturation temperatures of 31 °C, and exit vapor qualities from 0.20 to 0.99. Flow pattern characterization was also performed from images obtained by high-speed filming. Pressure drops up to 48 kPa/m were measured. These data were carefully analyzed and compared against 13 two-phase frictional pressure drop prediction methods, including both macro- and micro-scale methods. Comparisons against these methods based on the data segregated according to flow patterns were also performed. Overall, the method by Cioncolini et al. [1] provided quite accurate predictions of the present database.

This content is only available via PDF.
You do not currently have access to this content.