The work presents results of numerical investigation of flow structure and heat transfer of unconfined and confined impact mist jets with low mass fraction of droplets (ML1≤1%). The downward gas-droplets jet is issued from a pipe and strikes into the center of the circular target wall. Mathematical model is based on the solution to RANS equations for the two-phase flow in Euler approximation. For the calculation of the fluctuation characteristics of the dispersed phase model equations of Derevich and Zaichik [1] and Zaichik et al. [2] were applied. Predictions were performed for the distances between the nozzle and the target plate x/(2R) = 0.5–10 and the initial droplets size (d1 = 5–100 μm) at the fixed Reynolds number based on the nozzle diameter, Re = 26600. Addition of droplets causes significant increase of heat transfer intensity in the vicinity of the jet stagnation point compared with the one-phase air impact jet.

This content is only available via PDF.
You do not currently have access to this content.