This paper summarizes the results of an experimental investigation of the performance characteristics of a gravity/capillary driven heat pipe using water/alcohol mixtures as a working fluid. This investigation specifically explored the use of water/alcohol mixtures that exhibit strong concentration-based Marangoni effects. Experiments to determine heat pipe performance were conducted for pure water and water/alcohol solutions with increasing concentrations of alcohol. Initial tests with pure water determined the optimal working fluid charge for the heat pipe; subsequent performance tests over a wide range of heat input rates were then conducted for each working fluid at this optimum value. The results indicate that some mixtures can significantly enhance the heat transfer coefficient and heat flux capability of the heat pipe evaporator. For the best mixture tested, the maximum evaporator heat flux carried by the coolant without dryout was found to be 52% higher than the value for the same heat pipe using pure water as a coolant under comparable conditions. Peak evaporator heat fluxes above 100 W/cm2 were achieved with some mixtures. Evaporator and condenser heat transfer coefficient data are presented and the trends are examined in the context of the expected effect of the Marangoni mechanisms on heat transfer. Heat pipe design features that take maximum advantage of Marangoni effects are described and the application of these types of heat pipes to electronics cooling and heat removal from concentrating photovoltaic systems is discussed.

This content is only available via PDF.
You do not currently have access to this content.