Freezing temperature startup of fuel cells is a serious issue for smaller applications such as auxiliary or backup power units. To accurately test and examine this problem, a laboratory climate chamber is required which can accurately represent possible environments. This research designed a climate chamber using thermoelectric (peltier) heat pumps to provide temperatures down up to −10 degrees Celsius. The internal heat absorption from air utilized forced convection while heat emitted by the thermoelectric device was removed by flowing water channels. A copper plate was used to provide separation between the heat absorbing plate and the thermoelectric heat pump. The unit showed accurate temperature control and successful operation at sub-zero temperatures. Two proton exchange membrane fuel cells with 117 Nafion membrane and 212 Nafion membrane were tested in the climate chamber under various operating conditions. The startup performance was examined under both freezing and non-freezing temperatures. Heated and humidified feed gasses were shown to greatly improve the steady state time of the 117 setup by over 30%.

This content is only available via PDF.
You do not currently have access to this content.