The present work reports a computer simulation study of heat transfer in a rotary kiln used for drying and preheating food products such as fruits and vegetables with superheated steam at 1 bar. The heat transfer model includes radiation exchange among the superheated steam, refractory wall and the solid surface, conduction in the refractory wall, and the mass and energy balances of the steam and solids. Finite-difference techniques are used, and the steady state thermal conditions are assumed. The false transient approach is used to solve the wall conduction equation. The solution is initiated at the inlet of the kiln, and proceeds to the exit. The output data consist of distributions of the refractory wall temperature, solid temperature, steam temperature, and the total kiln length. The inlet of the kiln is the outlet of the gas (superheated steam), since the gas flow is countercurrent to the solid. Thus, for a fixed solid and gas temperature at the kiln inlet, the program predicts the inlet temperature of the gas (i.e. at the kiln exit) in order to achieve the specified exit temperature. In the absence of experimental results for food drying in a rotary kiln, the present model has been satisfactorily validated against numerical results of Sass [1] for drying of wet iron ore in a rotary kiln. The results are presented for drying of apple and carrot pieces. A detailed parametric study indicates that the influence of controlling parameters such as percent water content (with respect to dry solids), solids flow rate, gas flow rate, kiln inclination angle and the rotational speed of the kiln on the axial solids and gas temperature profiles and the total predicted kiln length is appreciable. The study reveals that a good design of a rotary kiln requires medium gas flow rate, small angle of inclination and low rotational speed of the kiln.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4939-2
PROCEEDINGS PAPER
Computer Simulation of Drying of Food Products With Superheated Steam in a Rotary Kiln
Koustubh Sinhal,
Koustubh Sinhal
Indian Institute of Technology Kanpur, Kanpur, UP, India
Search for other works by this author on:
P. S. Ghoshdastidar,
P. S. Ghoshdastidar
Indian Institute of Technology Kanpur, Kanpur, UP, India
Search for other works by this author on:
Bhaskar Dasgupta
Bhaskar Dasgupta
Indian Institute of Technology Kanpur, Kanpur, UP, India
Search for other works by this author on:
Koustubh Sinhal
Indian Institute of Technology Kanpur, Kanpur, UP, India
P. S. Ghoshdastidar
Indian Institute of Technology Kanpur, Kanpur, UP, India
Bhaskar Dasgupta
Indian Institute of Technology Kanpur, Kanpur, UP, India
Paper No:
IHTC14-23201, pp. 787-797; 11 pages
Published Online:
March 1, 2011
Citation
Sinhal, K, Ghoshdastidar, PS, & Dasgupta, B. "Computer Simulation of Drying of Food Products With Superheated Steam in a Rotary Kiln." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 4. Washington, DC, USA. August 8–13, 2010. pp. 787-797. ASME. https://doi.org/10.1115/IHTC14-23201
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
Simulation and Optimization of Drying of Wood Chips With Superheated Steam in a Rotary Kiln
J. Thermal Sci. Eng. Appl (June,2009)
Computer Simulation of Drying of Food Products With Superheated Steam in a Rotary Kiln
J. Thermal Sci. Eng. Appl (March,2012)
Heat Transfer in the Non-reacting Zone of a Cement Rotary Kiln
J. Eng. Ind (February,1996)
Related Chapters
How to Use this Book
Thermal Spreading and Contact Resistance: Fundamentals and Applications
Energy Balance for a Swimming Pool
Electromagnetic Waves and Heat Transfer: Sensitivites to Governing Variables in Everyday Life
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies