Seawater cooling towers have been used since the 1970’s in power generation and other industries, so as to reduce the consumption of freshwater. The salts in seawater are known to create a number of operational problems including salt deposition, packing blockage, corrosion, and certain environmental impacts from salt drift and blowdown return. In addition, the salinity of seawater affects the thermophysical properties which govern the thermal performance of cooling towers, including vapor pressure, density, specific heat, viscosity, thermal conductivity and surface tension. In this paper, the thermal performance of seawater cooling towers is investigated using a detailed model of a counterflow wet cooling tower. The model takes into consideration the coupled heat and mass transfer processes and does not make any of the conventional Merkel approximations. In addition, the model incorporates the most up-to-date seawater properties in the literature. The model governing equations are solved numerically and its validity is checked by data in the literature. Based on the results of the model, a correction factor is obtained which characterizes the degradation of the cooling tower effectiveness when seawater is used.

This content is only available via PDF.
You do not currently have access to this content.