Rapid mixing of two fluids in microchannels has posed an important challenge to the development of many integrated lab-on-a-chip systems. In this paper, we present a planar labyrinth micromixer (PLM) to achieve rapid and passive mixing by taking advantage of a synergistic combination of the Dean vortices in curved channels, a series of perturbation to the fluids from the sharp turns, and an expansion and contraction of the flow field via a circular chamber. The PLM is constructed in a single soft lithography step and the labyrinth has a footprint of 7.32 mm × 7.32 mm. Experiments using fluorescein isothiocyanate solutions and deionized water demonstrate that the design achieves fast and uniform mixing within 9.8 s to 32 ms for Reynolds numbers between 2.5 and 30. Compared to the mixing in the prevalent serpentine design, our design results in 38% and 79% improvements on the mixing efficiency at Re = 5 and Re = 30 respectively. An inverse relationship between mixing length and mass transfer Pe´clet number (Pe) is observed, which is superior to the logarithmic dependence of mixing length on Pe in chaotic mixers. Having a simple planar structure, the PLM can be easily integrated into lab-on-a-chip devices where passive mixing is needed.

This content is only available via PDF.
You do not currently have access to this content.