The increasing importance of improving efficiency and reducing capital costs has lead to significant work studying advanced Brayton cycles for high temperature energy conversion. Using compact, highly efficient, diffusion-bonded heat exchangers for the recuperators, has been a noteworthy improvement in the design of advanced carbon dioxide Brayton Cycles. These heat exchangers will operate near the pseudocritical point of carbon dioxide, making use of the drastic variation of the thermo-physical properties. This paper focuses on the experimental measurements of heat transfer under cooling conditions, as well as pressure drop characteristics within a prototypic printed circuit heat exchanger. Studies utilize type-316 stainless steel, nine channel, semi-circular test section, and supercritical carbon dioxide serves as the working fluid throughout all experiments. The test section channels have a hydraulic diameter of 1.16mm and a length of 0.5m. The mini-channels are fabricated using current chemical etching technology, emulating techniques used in current diffusion bonded printed circuit heat exchanger manufacturing. Local heat transfer values were determined using measured wall temperatures and heat fluxes over a large set of experimental parameters that varied system pressure, inlet temperature, and mass flux. Experimentally determined heat transfer coefficients and pressure drop data are compared to correlations and earlier data available in literature. Modeling predictions using the CFD package FLUENT are included to supplement experimental data. All nine channels were modeled using known inlet conditions and measured wall temperatures as boundary conditions. The FLUENT results show excellent agreement in total power removal for the near pseudocritical region, as well as regions where carbon dioxide is a high or low density fluid.

This content is only available via PDF.
You do not currently have access to this content.